
RESULTS

% APC + /PE -
cells

Mean Fluorescence 
intensity (a.u.)

Control 0.8 ± 0.1 32 ± 2

SLN 82.0 ± 4.6 1582 ± 438

NLC 98.8 ± 0.3 4558 ± 791

PURPOSE
Peptides are interesting therapeutic molecules with specific and potent action over 
a wide variety of diseases. Unfortunately, oral bioavailability of peptides is strongly 
limited by their proteolytic degradation in the duodenal lumen as well as their poor 
permeability across the intestinal epithelium [1].

In this study, we considered encapsulation of peptides in biodegradable and 
biocompatible Nanostructured Lipid Carriers (NLC) and Solid Lipid Nanoparticles 
(SLN) to overcome both oral bioavailability limiting aspects. 

CONCLUSION(S)
• Reproducible and monodisperse SLN and NLC were obtained by High Pressure 

Homogenization, a scalable and solvent-free method

• Leuprolide was successfully encapsulated in the nanoparticles

• Increasing peptide lipophilicity by Hydrophobic Ion Pair formation improved leuprolide 
encapsulation efficiency

• NLC provided a significant protection to trypsin-induced proteolytic degradation

• SLN and NLC were internalized by Caco-2 and Caco-2/HT29-MTX cell monolayers

• Important drug release in HBSS impeded permeability enhancement by encapsulation

• Stability of Leuprolide HIP needs to be improved to withstand biorelevant conditions

METHODS
Formation of Hydrophobic 

Ion Pair (HIP)

Precipitation efficiency (PE, %) =100- (100 * 
Leuprolide concentration before HIP

Leuprolide concentration after HIPtotal amount of drug
)

Nanoparticles formulation:
SLN composed of Precirol®ATO5 (Glyceryl distearate) and Kolliphor®RH40 (PEG-40 hydrogenated castor 
oil) were obtained by hot High-Pressure Homogenization (HPH). Capryol®90 (propylene glycol 
monocaprylate) was added in the case of NLC. 

Encapsulation Efficiency (EE, %) = 
Total amount of drug−unencapsulated amount of drug

total amount of drug
∗ 100

Physico-chemical characterizations:
Particle size was determined by Diffraction Light Scattering (DLS) and confirmed by Cryo-TEM 
measurements. PE and EE were measured by HPLC.

Enzymatic degradation by trypsin:
Trypsin solution (0.3 mg/mL) was added to samples ([LEU]=100 µg/mL) at 37°C. Enzymatic activity was 
stopped at predetermined time points. Remaining LEU was analyzed by HPLC. 

Permeability evaluation across intestinal cell models:
SLN and NLC loaded with HIP and DiD (lipophilic dye) were used. Interactions with Caco-2 and Caco-
2:HT29-MTX (3:1) monolayers were observed by confocal microscopy. Internalization by Caco-2 cells
was evaluated by flow cytometry. Transport studies across Caco-2 and Caco-2/HT29-MTX monolayers
were conducted in HBSS. Transported LEU was quantified via ELISA and the apparent permeability (Papp)

was calculated : Papp (cm.s-1) = Transport rate ∗
1

Surface area x initial LEU concentration

LEU release from SLN and NLC was studied in HBSS over 6 hours. LEU was quantified by HPLC.

OBJECTIVES
• To encapsulate Leuprolide (LEU), a hydrophilic model peptide in NLC and SLN

• To evaluate nanoparticle capacity to protect LEU from proteolytic degradation

• To evaluate nanoparticle ability to increase LEU intestinal permeability
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Fig 4: Degradation profile of encapsulated LEU compared to free LEU in
presence of trypsin. (*p<0.05 and **p<0.01 when compared to
suspensions dispersed in water) (mean± SEM (n=3) )
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Fig. 1: Formation of a HIP by
electrostatic interaction between
Leuprolide and sodium docusate (molar
ratio 1:2) [2]

Trypsin is not soluble in Capryol®90 [3].
Consequently, the addition of a C90 in NLC led to 
significant protection of LEU over trypsin 
degradation. 

Fig 5: (A) confocal microscopy images of SLN and NLC interactions with Caco-2 and Caco-2:HT29-MTX, x25
(B) Flow cytometry quantitative interaction study of Caco-2 cells (n=10, N=3, mean ± SEM)

Fig 6: Papp of neat and encapsulated LEU on 
Caco-2 and Caco-2/HT29-MTX cell monolayers
(n=3, N=3, data expressed as mean± SEM)

Confocal microscopy images show SLN and NLC internalization by Caco-2 and Caco-2/HT29-
MTX co-cultured cell monolayers, enlighting the ability of nanoparticles to cross mucus. 
Flow cytometry confirmed high particle uptake by Caco-2.
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Fig 7: In-vitro release profile of LEU in HBSS at 37°C 
(data expressed as mean ± SEM, n=3)

No improvement of LEU permeability was observed. 
Indeed, the platelet-like structure of the particles, implying a large surface of exchange with 
the medium induced a high burst released of LEU from the nanoparticles [4]. Moreover, the 
HIP is not stable in this high ionic strength environment (150 mM) [5].

Blank NLC NLC-LEU NLC-HIP Blank SLN SLN-LEU SLN-HIP

Z-average (nm) 114 ± 11 113 ± 1 125 ± 2 119 ± 4 124 ± 1 127 ± 1
PDI 0.2 0.2 0.2 0.2 0.2 0.2

Table 1: Size distribution of NLC and SLN systems

PE was 99.9% (n=110).
HIP formation enabled significant increase in EE. Reproducible NLC and SLN were obtained by HPH. The nanoparticles 
were platelet-shaped with a Z-average around 115 nm and a PDI of 0.2. 
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Fig. 2: HIP and LEU EE in NLC and SLN
(* p<0.05, ** p<0.01) (mean± SEM, n=3)
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Fig. 3: Cryo-TEM images of blank NLC (A), NLC-LEU (B), NLC-HIP (C), blank SLN (D), 
SLN-LEU (E) and SLN-HIP (F).
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